4. Backtracking
Template
void backtrack(int[] candidates, int index, other params, List<Integer> path, List<List<Integer>> result) {
if (satisfied condition) {
results.add(new ArrayList<>(path));
}
for (option in options) {
//Skip not satified
if (need filter) {
continue;
}
path.add(option);
backtrack(candidates, newIndex, path, results);
path.remove(path.size() - 1);
}
}
Typic problems
Permute problem, the time complexity of permute problems is (n! - factorial of n)
//Permute, the input nums don't have duplicates
public List<List<Integer>> permute(int[] nums) {
List<List<Integer>> results = new ArrayList<>();
List<Integer> path = new ArrayList<>();
boolean[] used = new boolean[nums.length];
backtrack(nums, used, path, results);
return results;
}
private void backtrack(int[] nums, boolean[] used, List<Integer> path, List<List<Integer>> results) {
if (path.size() == nums.length) {
results.add(new ArrayList<>(path));
return;
}
//Note here for the loop, the start is 0, reference to the permute tree
for (int i = 0; i < nums.length; i++) {
if (used[i]) {
continue;
}
used[i] = true;
path.add(nums[i]);
backtrack(nums, used, path, results);
used[i] = false;
path.remove(path.size() - 1);
}
}
//permute on a candidate array that has duplicated numbers
public List<List<Integer>> permuteUnique(int[] nums) {
List<List<Integer>> results = new ArrayList<>();
List<Integer> path = new ArrayList<>();
boolean[] used = new boolean[nums.length];
Arrays.sort(nums);//注意
backtrack(nums, used, path, results);
return results;
}
private void backtrack(int[] nums, boolean[] used, List<Integer> path, List<List<Integer>> results) {
if (path.size() == nums.length) {
results.add(new ArrayList<>(path));
return;
}
for (int i = 0; i < nums.length; i++) {
if (used[i]) {
continue;
}
// 如果前面的相邻相等元素没有用过,则跳过
// 当出现重复元素时,比如输入 nums = [1,2,2',2''],2' 只有在 2 已经被使用的情况下才会被选择,同理,2'' 只有在 2' 已经被使用的情况下才会被选择,这就保证了相同元素在排列中的相对位置保证固定。
if (i > 0 && nums[i] == nums[i - 1] && !used[i - 1]) {
continue;
}
used[i] = true;
path.add(nums[i]);
backtrack(nums, used, path, results);
used[i] = false;
path.remove(path.size() - 1);
}
}
Combination & Subset, where order doesn't matter,
the time complexity subset is O(2^n), because for each element, we have two choices: either include it in the subset or exclude it. Since there are n elements, we have 2^n possible combinations of including or excluding each element.
For combination of K out of n element, the time complexity is (n!/(k!*(n−k)!)), This is because, at each step, we have n choices to consider for the next element, but we only need to consider k elements. Hence, the number of recursive calls made is proportional to the number of combinations
//Subsets
// List all subset of the given array, there is not duplicates in the array
public List<List<Integer>> subsets(int[] nums) {
List<List<Integer>> results = new ArrayList<>();
List<Integer> path = new ArrayList<>();
backtrack(nums, 0, path, results);
return results;
}
private void backtrack(int[] nums, int start, List<Integer> path, List<List<Integer>> results) {
if (path.size() > nums.length) {
return;
}
results.add(new ArrayList<>(path));
//notice i is not from 0, but start, reference to the tree
for (int i = start; i < nums.length; i++) {
path.add(nums[i]);
backtrack(nums, i + 1, path, results);
path.remove(path.size() - 1);
}
}
// Subset with duplicates
public List<List<Integer>> subsetsWithDup(int[] nums) {
List<List<Integer>> results = new ArrayList<>();
List<Integer> path = new ArrayList<>();
//Sort first
Arrays.sort(nums);
backtrack(nums, 0, path, results);
return results;
}
private void backtrack(int[] nums, int start, List<Integer> path, List<List<Integer>> results) {
if (path.size() > nums.length) {
return;
}
results.add(new ArrayList<>(path));
for (int i = start; i < nums.length; i++) {
//Skip duplicates
if (i > start && nums[i] == nums[i - 1]) {
continue;
}
path.add(nums[i]);
backtrack(nums, i + 1, path, results);
path.remove(path.size() - 1);
}
}
Combination sum
//Find all the combinations that can sum to the target
//Each element can be used more than once, there is not duplicates
public List<List<Integer>> combinationSum(int[] candidates, int target) {
List<List<Integer>> results = new ArrayList<>();
List<Integer> path = new ArrayList<>();
backtrack(candidates, 0, target, path, results);
return results;
}
private void backtrack(int[] candidates, int start, int remain, List<Integer> path, List<List<Integer>> results) {
if (remain == 0) {
results.add(new ArrayList<>(path));
return;
}
if (remain < 0) {
return;
}
for (int i = start; i < candidates.length; i++) {
path.add(candidates[i]);
//注意这次递归是从i开始,而不是i+1,因为同一个element可以用多次
backtrack(candidates, i, remain - candidates[i], path, results);
path.remove(path.size() - 1);
}
}
// Combination sum on a unsorted array with duplicated items
// Each item can only be used once, the results shouldn't contain duplicated combinations
public List<List<Integer>> combinationSum2(int[] candidates, int target) {
List<List<Integer>> results = new ArrayList<>();
List<Integer> path = new ArrayList<>();
Arrays.sort(candidates);
backtrack(candidates, 0, target, results, path);
return results;
}
private void backtrack(int[] candidates, int start, int remain, List<List<Integer>> results, List<Integer> path) {
if (remain == 0) {
results.add(new ArrayList<>(path));
return;
}
if (remain < 0) {
return;
}
for (int i = start; i < candidates.length; i++) {
//Skip duplicated items
if (i > start && candidates[i] == candidates[i - 1]) {
continue;
}
path.add(candidates[i]);
//i + 1 makes the same item not be used more than once
backtrack(candidates, i + 1, remain - candidates[i], results, path);
path.remove(path.size() - 1);
}
}
5. DFS
Last updated