6. BFS
Template
// BFS问题的本质就是让你在一幅「图」中找到从起点 start 到终点 target 的最近距离
// 计算从起点 start 到终点 target 的最近距离
int BFS(Node start, Node target) {
Queue<Node> q = new LinkedList<>(); // 核心数据结构
Set<Node> visited = new HashMap<>(); // 避免走回头路
q.offer(start); // 将起点加入队列
visited.add(start);
while (!queue.isEmpty()) {
int sz = q.size();
/* 将当前队列中的所有节点向四周扩散 */
for (int i = 0; i < sz; i++) {
Node cur = q.poll();
/* 划重点:这里判断是否到达终点 */
if (cur is target)
return step;
/* 将 cur 的相邻节点加入队列 */
for (Node x : cur.adj()) {
if (!visited.contains(x) {
q.offer(x);
visited.add(x);
}
}
}
}
// 如果走到这里,说明在图中没有找到目标节点
}
Typical problems
Binary tree min depth
//Calculate the minimum depth of a tree
int minDepth(TreeNode root) {
if (root == null) return 0;
Queue<TreeNode> q = new LinkedList<>();
q.offer(root);
// root 本身就是一层,depth 初始化为 1
int depth = 1;
while (!q.isEmpty()) {
int sz = q.size();
/* 将当前队列中的所有节点向四周扩散 */
for (int i = 0; i < sz; i++) {
TreeNode cur = q.poll();
/* 判断是否到达终点 */
if (cur.left == null && cur.right == null)
return depth;
/* 将 cur 的相邻节点加入队列 */
if (cur.left != null)
q.offer(cur.left);
if (cur.right != null)
q.offer(cur.right);
}
/* 这里增加步数 */
depth++;
}
return depth;
}
Open the lock
public int openLock(String[] deadends, String target) {
Set<String> dead = new HashSet<>();
for (String d : deadends) dead.add(d);
Queue<String> queue = new LinkedList<>();
Set<String> visited = new HashSet<>();
int depth = 0;
String marker = "0000";
if (dead.contains(marker)) return -1;
queue.offer(marker);
visited.add(marker);
while (!queue.isEmpty()) {
int size = queue.size();
while (size > 0) {
String lockPosition = queue.poll();
if (lockPosition.equals(target)) {
return depth;
}
for (int i = 0; i < 4; i++) {
char c = lockPosition.charAt(i);
String s1 = lockPosition.substring(0, i) + (c == '9' ? 0 : c - '0' + 1) + lockPosition.substring(i + 1);
String s2 = lockPosition.substring(0, i) + (c == '0' ? 9 : c - '0' - 1) + lockPosition.substring(i + 1);
if (!visited.contains(s1) && !dead.contains(s1)) {
queue.offer(s1);
visited.add(s1);
}
if (!visited.contains(s2) && !dead.contains(s2)) {
queue.offer(s2);
visited.add(s2);
}
}
size--;
}
depth++;
}
return -1;
}
Last updated